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A local electricity distribution company (LDC) can reduce its exposure to the inherent risks of spot-price volatility and
uncertain future demand via forward contracts. Management’s problem is to determine the optimal forward-contract
purchase. We propose a practical three-stage approach for dealing with the problem. The first stage determines an
optimal purchase by solving a cost-constrained risk-minimization problem. The second stage derives the efficient
frontier of tradeoffs between expected cost and cost risk from the first-stage solution, at various bounds on the expected
cost. The optimal solution is found by melding the frontier with management’s risk preferences. In the third stage, the
model’s parameters are estimated from data typically available to an LDC and used to determine its forward-contract
purchase.
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Introduction

Privatization and the creation of a competitive spot market

for electricity in the United Kingdom (UK) brought with it

volatile pool prices whose effects risk-averse large consumers

(eg industrial firms) and resellers (eg regional electricity

suppliers) sought to mitigate through forward contracts.1–3

Deregulation in the United States (US) likewise resulted in

volatile spot-market prices and the use of various hedging

instruments, including in particular forward trades, by local

distribution companies (LDCs) that are committed to

provide electricity upon demand to their customers.4–6 And

in both cases, when put to the empirical test, the implications

of the forward-contracting process for electricity prices, the

buyers, and the sellers were mixed and debatable.3,5

The purpose of the present paper is not to join the latter

debate. Rather, we direct our attention to one important and

essentially neglected aspect of the forward-contracting issue:

notably, the determination, from the perspective of LDC

management, of the optimal forward-contract purchase. We

broached this issue in a previous paper wherein we described

a heuristic procedure for attacking the problem.7 The

present paper extends our previous work by providing a

formal analytic procedure that allows management to

readily determine the forward-contract purchase that will

be optimal from the standpoint of the LDC’s customers,

given the inherently uncertain spot prices and customer

demand that encourage hedging in the first place.

The procedure, which has potential application in any sort

of portfolio decision in which management might purchase a

forward contract in order to hedge against price fluctuations

in a spot market, comprises three stages. In the first stage,

an optimal purchase is determined as the solution to a

cost-constrained risk-minimization problem. The imposed

constraint is an upper bound on the LDC’s expected

procurement cost. In the second stage, the efficient frontier

that summarizes the Pareto-optimal tradeoffs between

expected cost and risk, as proxied through the procure-

ment-cost variance, is derived from the first-stage solution at

various bounds on the expected procurement cost. The

optimal solution is then determined from management’s risk

preferences and the ‘risk and return’ tradeoffs that it is

willing to accept on behalf of its customers. Finally, in the

third stage, the parameters of the model are estimated from

data typically available to an LDC. By way of illustration,

the data used at the estimation stage are based on those for a

Florida-based municipal utility owned by the city’s residents.

The parameter estimates are then used to determine the

optimal forward-contract purchase for a hypothetical LDC.

The optimal-purchase decision under extreme risk

aversion

Consider an LDC with contractual obligations to provide

electricity to its customers, upon demand. The LDC can

satisfy that demand through either self-generation or spot-

market purchases, or by reselling electricity that it has

procured via a forward contract into which it has previously
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entered. The length of the contract period depends upon the

market. The New York Mercantile Exchange (NYMEX),

for example, dropped its monthly contract in favour of daily

contracts in 2001, and quarterly and annual contracts might

also be available. Assuming all else constant, however, an

LDC would ordinarily prefer a 6-month contract to, say,

two 3-month contracts, because it has a lower transactions

cost. For simplicity, we assume the LDC to have neither

generation capacity nor existing power-purchase contracts,

and that only a single contract period is at issue.

Incorporating existing contract costs or fuel costs associated

with generation adds computational complexity, without

improving our understanding of the procurement problem.

The LDC that meets its entire electricity requirement of Q

megawatt hours (MWh) for t1 via spot-market purchases at

an average price of $P/MWh will have an ex post

procurement cost of

C ¼ PQ ð1Þ

Relying exclusively on the spot market to acquire Q

exposes the LDC to potentially very high costs that can be

mitigated when management hedges its electricity purchases

through fixed-price forward contracts. In particular, suppose

management purchases q MWh at the forward price of

$F/MWh. Now the ex post cost is

C ¼ PðQ� qÞ þ Fq ð2aÞ

Equation (2a) shows that C converges to FQ as q

approaches Q. While forward contracting can reduce the

cost effects of unanticipated spot-price changes, it cannot

eliminate the cost variations due to unanticipated changes in

its customers’ demand for electricity, demand that the LDC

is contractually obligated to satisfy. Thus, when making its

forward-contract decision, management must recognize that

both P and Q are random variables, so that C is also a

random variable. Suppose management assigns to P and Q

expected values (variances) of mP (sP
2 ) and mQ (sQ

2 ),

respectively, as well as a covariance of sP,Q.
When QXq, the LDC will have to purchase (Q�q) on the

spot market at the price of P. Alternatively, when Qoq, the
LDC will enter the spot market as a seller, rather than as a

buyer, and the P(Q�q)o0 term in Equation (2a) reduces the

procurement cost.

Rewrite Equation (2a) as

C ¼ PQ� Pq þ Fq ð2bÞ

The expected procurement cost is8

m ¼ ðmQ � qÞmP þ sP;Q þ Fq ð3Þ

Let r denote the correlation between P and Q. Casual

observation leads us to hypothesize r40. Specifically, the

two most common causes of sharp spikes in the spot price

are: (1) relatively small supply reductions, say due to forced

plant outages, along price-insensitive spot-market demand

curves; and (2) demand surges, say to due to rising

temperatures in the summer or falling temperatures in the

winter, along close to full-capacity and virtually inelastic

supply curves.9,10 We conjecture that the latter tend to be

more responsible for short-term price changes than are the

former. As will subsequently be seen, this conjecture, which

implies r40, is supported by the sample data that underlie

our empirical analysis. The conjecture presumes that

generators are not ‘gaming the market’ by withdrawing

capacity at critical times of near-capacity demand in order to

drive up prices. California and the United Kingdom,

however, may provide recent examples that call into

question the universality of the presumption.

Since r40, sP,Q¼rsPsQ40. Denote mCE¼ (mQ�q)mPþ
Fq as the certainty-equivalent procurement cost, or the

procurement cost evaluated at the expected price and

quantity. It is immediately seen that mXmCE, with the strict
equality holding when P and Q are uncorrelated. Moreover,

dm/dq¼�mPþF and d2m/dq2¼ 0. Hence, so long as 0o
FomP, dm/dqo0; or, the expected procurement cost is a

decreasing linear function of forward-contract purchases.

When F¼ mP, dm/dq¼ 0 and the expected procurement cost
is invariant with respect to forward-contract purchases.

Otherwise, the expected procurement cost is an increasing

linear function of the forward-contract purchase. Why, then,

would LDC management enter into a forward contract that

commits it to purchases at a price of F4mP? The answer is to
reduce risk, as measured through the procurement-cost

variance8

s2 ¼ s2PQ þ q2s2P � 2qsPQ;P ð4Þ

Here, sPQ
2 is the variance of the product PQ, sP

2 is the spot-

price variance, and sPQ,P is the covariance between PQ and

P. Both sPQ
2 and sPQ,P can be expressed in rather daunting

equations, containing the expected values and variances of P

and Q, as well as expectations of higher-order moments.8

Happily, these expressions are irrelevant to the present

analysis or to the illustration that follows.

Equation (4) makes it apparent that a high spot-price

variance directly translates into a high procurement-cost

variance. As ds2/dq¼ 2qsP2�2sPQ,P and d2s2/dq2¼ 2sP240,

the procurement-cost variance is a strictly convex function of

q that takes on its minimum value at q¼sPQ,P/sP
2 . Thus, the

procurement-cost variance decreases with forward-contract

purchases when qosPQ,P/sP
2 and increases with forward-

contract purchases when q4sPQ,P/sP
2 . More critically, under

extreme risk aversion, when management’s sole concern is

with minimizing the cost variance, it will enter into a forward

contract for q¼ sPQ,P/sP
2 , regardless of the cost! But

q40 requires sPQ,P¼E((PQ�mPQ)(P�mP))¼E(P2Q)�
mPE(PQ)40. The latter expectation is necessarily positive,

as both P and Q are positive. Hence a minimum-variance

solution with q40 requires E(P2Q)/E(PQ)4mP. Otherwise,
there is no feasible solution.
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Stage 1: the optimal purchase decision under an expected-

cost constraint

Extreme risk aversion is rare. Rather, suppose that a risk-

averse management sets an upper boundM on the expected

procurement cost that it can tolerate, and wants to

determine its forward-contract purchases so as to minimize

the cost variance in light of M. We assume that the risk-

averse management does not engage in speculative short

selling of forward contracts. Thus, management faces the

following problem:

Minimize
q

s2 ¼ s2PQ þ q2s2P � 2qsPQ;P ð5aÞ

Subject to m ¼ ðmQ � qÞmP þ sP;Q þ FqpM ð5bÞ

qX0 ð5cÞ

Let l denote a Lagrange multiplier and let * denote an

optimal solution. Write the Lagrangian as

L ¼ s2PQ þ q2s2P � 2qsPQ;P þ lððmQ � qÞmP þ sP;Q

þ Fq�MÞ ð6Þ

Since s2 is strictly convex in q and the cost constraint is
linear in q, the second-order sufficiency conditions for

optimality are satisfied. The necessary first-order Karush–

Kuhn–Tucker conditions may then be written as follows:11

qL=qq ¼ 2q�s2P � 2sPQ;P þ l�ðF � mPÞX0 ð6aÞ

fqL=qqgq� ¼ f2q�s2P � 2sPQ;P þ l�ðF � mPÞgq� ¼ 0 ð6bÞ

qL=ql ¼ ðmQ � q�ÞmP þ sP;Q þ Fq� �Mp0 ð6cÞ

fqL=qlgl� ¼ fðmQ � q�ÞmP þ sP;Q þ Fq� �Mgl�

¼ 0 ð6dÞ

q�X0 ð6eÞ

l�X0 ð6fÞ

The zero forward-contract purchase decision

First consider the case where the optimal decision is not to

engage in forward contracting, or q*¼ 0. Suppose l*¼ 0,
too. Substituting into Equation (6a), the necessary condition

becomes �sPQ,PX0, which as we have shown cannot be so.

Hence, zero forward-contract purchases are incompatible

with anon-binding expected procurement-cost constraint.

This leads to:

Proposition 1 As long as the cost constraint is not binding,

management will move towards the minimum-variance solution

of q*¼ sPQ,P/sP
2 .

When, however, l*40, the bracketed term {} in

Equation (6d) must equal zero. Substituting q*¼ 0 into that
term evolves into the condition that mQmPþ sP,Q¼M. This
leads to:

Proposition 2 Zero forward-contract purchases are compa-

tible with a binding expected procurement-cost constraint if

and only if the upper bound set on the expected procurement

cost equals (mQmPþ mP,Q).

Positive forward-contract purchase decisions

Consider the case where q*40. For openers, once again

suppose that l*¼ 0. Now it is the bracketed term in Equation

(6b) that must equal zero. Substituting l*¼ 0 into that term
and solving, we return to minimum-variance solution of

q� ¼ sPQ;P=s2P ð7aÞ

As stated in Proposition 1, when a positive optimal purchase

decision results in a non-binding expected procurement-cost

constraint, the optimal forward purchase does not depend

on the forward price. This makes sense, because if ‘money is

not a problem,’ then management should not worry about

the forward price in deciding on the amount of forward

purchase to minimize the procurement-cost variance.

Alternatively, suppose that l*40 so that the expected

procurement-cost constraint is binding. In this case, setting

the bracketed term in Equation (6d) equal to zero and

solving results in

q� ¼ ðM � mQmP � sP;QÞ=ðF � mPÞ ð7bÞ

Proposition 3 A binding cost constraint and a positive

forward-contract purchase require either FomP and

MomQmPþsP,Q, or F4mP and M4mQmPþ sP,Q. In either
case, the optimal forward purchase q*40 behaves like an input
demand: conditional on mQ, mP and sP,Q, q

*would increase with

the upper bound M and decrease with the forward price F.

Returning to the bracketed term in Equation (6b) and

solving for l* results in

l� ¼ 2ðq�s2P � sPQ;PÞ=ðmP � FÞ ð7cÞ

Hence, if l*40 and F4mP, q
*osPQ,P/sP

2 . The latter

inequality is reversed when l*40 and FomP. This leads to:

Proposition 4 When the forward-contract price is above

(below) the expected spot price and management’s expected

procurement-cost constraint is binding, the LDC’s forward-

contract purchase is below (above) the amount that minimizes

the cost variance.

Intuitively, if forward contracting at a high price is less of

a bargain relative to the spot market, management is willing
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to accept the additional risk that accompanies a

greater reliance on the spot market. Should forward

contracting become more of a bargain relative to the spot

market, management is willing to accept the additional risk

that accompanies too large of a reliance on forward

contracting.

Stage 2: the efficient frontier

Developing the efficient frontier

Now, F and mP are known values over which management
has no control, except insofar as how management may

attain a forward-contract price quote. As detailed in our

earlier paper, one particularly appealing way of arriving at

the lowest contract price is through an internet-based multi-

round auction.7 Subject to that qualification, the only

parameter that management does control is M, which

dictates q* and the implied m* and s*2.
Changes in M by management alter m* and s*2. The

various (m*, s*2) combinations trace out the efficient frontier
of Pareto-optimal solutions, and they provide the tradeoffs

available to management between the expected procurement

cost and the cost variance. When F¼mP, however, the
expected procurement cost is fixed at m¼ mQmPþsP,Q and is
also out of management’s control. In that event there are no

available tradeoffs and management, which has an obliga-

tion to serve, will elect the unique minimum-variance

purchase decision. Otherwise, with the expected procure-

ment cost shown on the horizontal axis and the cost variance

on the vertical axis, the efficient frontier will be a strictly

convex decreasing curve within the relevant range.

As regards the relevant range, when F4mP, the lower
bound on m* is dictated by the M4mQmPþsP,Q condition.
The upper bound on m* is located where the expected

procurement-cost constraint is no longer binding and the

expected procurement cost is at the minimum-variance

asymptote of

m�MV ¼ mQmP þ sP;Q þ ðF � mPÞðsPQ;P=s2PÞ ð8Þ

When FomP, the upper bound on m* is dictated by the

MomQmPþ sP,Q condition. In principle, there is no lower

bound on m*. Management might see an opportunity to take
advantage of the low-forward price in period t0 to become a

seller in the spot market in period t1, and not simply be

forced to make spot sales because of low customer demand.

As such, the LDC might turn an expected profit in the spot

market, which could translate into a negative expected

procurement cost. In practice, however, when FomP, the
difference is small and transitory, and insufficient to

encourage this sort of speculation.

As regards the curvature of the efficient frontier, since

qL/qM¼�lp0, increases in M, which increase m* in the

relevant range, decrease s*2 in that range. Thus the efficient

frontier is a decreasing curve. Further, since q* is a linear

function of M and m is a linear function of q, m* is a linear
function of M. But s2 is a strictly convex function of q, so
that it is also and necessarily a strictly convex and decreasing

function of M and hence of m*.

Selecting the optimal point on the efficient frontier

Management’s problem is to select a specific (m*, s*2) pair
from the combinations on the efficient frontier. When doing

so, management is acting on the behalf of its customers for

whom the LDC serves as a purchasing agent. One way or

another, then, management must assess the tradeoffs

between the expected procurement cost and the cost variance

that are compatible with its customers’ risk preferences. That

assessment may initially be formalized through a risk-

preference function, V¼ v(C), and then translated into

E[V]¼ f(m, s2). Under risk aversion, the latter is a concave
function for determining the optimal q* at the (m*, s*2)
combination that falls on the lowest indifference curve

tangent to the efficient frontier.

In the fortuitous case where C is normally distributed

and management quantifies its risk preferences via, say,

V¼ 1�elC, E(V)¼ 1�exp(gmþ g2s2/2).8 The indifference

curve for which E(V)¼ 1�eY has Y¼ gmþ g2s2/2; or

s2¼ 2Y/g2�2m/g. Thus, the indifference surface is a series
of parallel lines with slope of �2/g. The slope reflects the
tradeoff that management is willing to accept between the

expected procurement cost and the cost variance, where g40

is the Pratt–Arrow measure of risk aversion. The latter will

be well below unity even for highly risk-averse decision

makers.12

Efficient frontiers have been used in this fashion,

and for related purposes, in a wide variety of contexts,13–17

the most closely related of which are currency hedging18

and hedging foreign investment in US real estate

through forward contracting.19 Using the efficient

frontier for our specific purpose of determining the optimal

tradeoff between cost expectation and cost variance is a

variation on Markowitz’s classic theme for portfolio

selection.20

Stage 3: parameter estimation

The parameters of the model, the means and variances

and the like, may be estimated in any number of different

ways, including direct assignment by management as

in the Bayesian tradition, or as we suggest here via

judicious use of regression analysis. To illustrate that

procedure for a hypothetical LDC, we use the data collected

for a small municipal utility (MU) in Florida to which we

have guaranteed anonymity. During the data-collection

period, management’s planning period was t1¼October
2002.
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The estimation procedure

We follow a regression-based procedure that is detailed and

justified elsewhere7,21 to obtain estimates of mP and sP
2 ,

denoted uP and sP
2 . In essence, the procedure entails

estimating a spot-price regression that relates the LDC’s

monthly average spot-purchase prices to monthly average

spot prices in May 2000–July 2002 at the major trading hubs

of Entergy (Louisiana) and ERCOT (Texas), which are

geographically close to Florida. For our hypothetical LDC,

the spot-price regression’s dependent variable is the monthly

average price for the MU’s historic purchases and the

explanatory variables (besides the intercept) are the monthly

average of daily spot prices at Entergy and ERCOT, where

electricity forwards are traded. The sample period is May

2000 to July 2002.

Table 1 reports summary statistics of the MU, Entergy

and ERCOT monthly average prices, the MU’s monthly

spot MWh purchases and costs, as well as the Augmented

Dickey-Fuller (ADF) statistics to test the null hypothesis

that a data series is a random walk.22 The ADF statistics

indicate that all three of the price series follow random

walks, suggesting the possibility of a ‘spurious regression’

wherein the MU price series and the Entergy and ERCOT

price series may diverge over time without limit. The test for

this is a cointegration test for stationary residuals. The test

statistic is an ADF statistic whose critical value at the 5%

significance level is equal to �3.34.
Table 2 reports the spot-price regression results and the

corresponding ADF statistic. The adjusted R2 indicates that

the estimated regression explains 84% of the MU price

variance. The coefficient estimates for the Entergy and

ERCOT prices are significant at the 5% level. The mean

squared error is large ($127/MWh) due to the relatively

small sample size. The ADF statistic of �5.38 indicates that
the estimated regression is not prone to spurious interpreta-

tion.

We use the coefficient estimates in Table 2 and the

forward prices of $24.80/MWh and $27.80/MWh quoted on

September 9, 2002 for October delivery at Entergy and

ERCOT, respectively, to obtain the October expected price

of uP¼ $43/MWh and variance of sP2 ¼ $144/MWh.7
Next, we apply an autoregressive method (PROC

FORECAST in SAS) to estimate mQ and sQ
2 , which we

denote uQ¼ 16 275MWh and sQ
2 ¼ 16297 369MWh, based

on the MU’s monthly net MWh purchases in May 2000–July

2002.7 Then we compute r¼ 0.42, the estimate of r, the
correlation between the MU’s monthly spot-purchase price

and its monthly net purchases using the data for May 2000–

July 2002. The positive estimated correlation between spot-

purchase price and the MU’s monthly net purchases

supports our earlier conjecture. We compute rPQ,P¼ 0.93,
the estimate of rPQ,P, the correlation between the MU’s

monthly spot-purchase cost and monthly spot price, using

the data for May 2000–July 2002. Finally, the estimated

mean of PQ is uPQ¼ $722729 whose estimated variance is
sPQ
2 ¼ $225 684 million.7

The LDC’s efficient frontier and the optimal forward
purchase

The optimal forward purchase q* is based on Equations (7a)

and (7b). The computation of the estimated expected

procurement cost, u*, and the estimated variance in the

procurement cost, s*2, is based on Equations (3) and (4).

Table 3 presents q*, u*, and s*2 under alternative

assumptions on F and M. Consider the first three columns

Table 1 Summary statistics for monthly average prices ($/MWh), MU’s spot MWh purchase, and MU’s purchase cost ($)

Statistics MU price Entergy price ERCOT price MU spot MWh purchase MU spot purchase cost

Sample size 25 27 27 27 25
Mean 64.13 40.63 43.25 16 351 1 113 028
Minimum 25.09 18.90 18.35 10 289 276 207
First quartile 42.57 26.01 25.68 12 901 718 344
Median 61.76 40.65 45.13 15 180 870 171
Third quartile 88.25 50.88 50.65 20 129 1 483 377
Maximum 121.59 79.76 89.44 23 207 2 620 872
Standard deviation 27.79 17.01 20.40 3 967 626 694
ADF statistic for testing H0:
the data series is a random walk

�1.43 �1.76 �1.17 �2.80 �164

Note: The MU price series only has 25 observations due to missing values.

Table 2 Spot price regression results

Independent variable Coefficient

Intercept 4.10
Entergy price 0.80a

ERCOT price 0.70a

Adjusted R2 0.84
Mean squared error 127
ADF statistic for testing H0:
the price series drift apart without limit

�5.4a

aSignificant at the 5% level.
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that contain (q*, u*, s*2) for F¼ $39/MWh, which is the

forward price paid by the MU and less than uP¼ $43/
MWh.7 The results confirm Proposition 5 that when FouP
and management’s expected procurement-cost constraint is

binding, q* exceeds the amount that minimizes the cost

variance. The pairs of (u*, s*2) fall on the efficient frontier for

F¼ $39/MWh, which is sketched in Figure 1. This frontier is
intentionally drawn to include a small upward-sloping

segment, which is beyond the frontier’s relevant range, so

as to indicate the minimum cost variance of $29 billion

reported in the bottom row of Table 3.

The fourth column of Table 3 shows the optimal

purchases from which the efficient frontier for F¼ $50/
MWh is derived. Since the forward-contracting costs have

increased, this frontier lies above the one for F¼ $39/MWh,
as shown in Figure 1.

The two straight lines in Figure 1 reflect alternative risk

preferences for the hypothetical LDC management. For

expository purposes only, C is assumed to be normally

distributed, and management is assumed to have assessed an

exponential risk-preference function with constant absolute

risk aversion. Two levels of risk aversion are considered in

Figure 1: g¼ 1.33	 10�6 and 2.0	 10�5. Because u* is in
thousands and s*2 is in billions of US dollars, the slope of the

indifference curve for g¼ 1.33	 10�6 is �1.5 and that for
g¼ 2.0	 10�5 is �0.1. The hypothetical LDC’s optimal

forward-contract purchases for these two g levels are 61 100
and 39535MWh, respectively.

Conclusions

The UK and the US are merely exemplars of a larger set of

nations in which LDCs can satisfy some or all of their

customers’ electricity demands by dipping into spot markets.

The downside of doing so is that real-time changes in those

demands and shifts in electricity supply can result in wide

swings in the spot price, swings that may have potentially

disastrous financial consequences for an LDC. The April

2001 bankruptcy of Pacific Gas and Electric (PG&E), one

of the largest utilities in the US, is a dramatic case in

point. Had PG&E bought sufficient forward electricity as to

lock in its cost of resale, it would not have incurred the large

loss due to the difference between the spot purchase

price and the capped resale rate. The forward price in the

summer 2000 for delivery over the subsequent twelve months

was around $60/MWh, which was almost identical to the

capped rate, excluding the charges for transmission and

distribution services, and substantially below the average

spot price of over $250/MWh during the first five months of

2001.23

One intriguing option available to management for

lessening an LDC’s reliance on the spot market with its

inherent risks is to enter into a fixed-price forward contract

for future electricity delivery to meet end-use customers’

demands. That option raises three basic issues: (1) How to

obtain the best contract price; (2) When to enter into the

contract; and (3) The amount to be purchased in the

contract. We describe an internet-based competitive auction

procedure for dealing with the first issue in an earlier paper.7

The second issue remains a back-burner challenge that we

hope to move to the front burner at some future date. In this

paper, we have focused our attention exclusively on the third

issue and described a readily implemented three-stage

approach for resolving it.

At the heart of the approach is a philosophy that

an LDC’s procurement policy and strategy can and should

be based on the solution to an optimization problem.

One aspect of the problem requires management to identify

the optimal set of forward purchases available to it. No

single purchase quantity can be identified as optimal,

because the problem is two-dimensional, with the objective

of low expected procurement cost conflicting with that

Table 3 Efficient forward purchase q* (MWh), expected
procurement cost u* ($thousands), and cost variance s*2

($billions)

F¼ $39/MWh F¼ $50/MWh

q* u* s*2 q* u* s*2

76 969 400 000 236 4006 750 000 186
65 044 450 000 129 11 352 800 000 126
53 119 500 000 60 18 697 850 000 80
41 195 550 000 31 26 042 900 000 49
37 995 563 418 29 37 995 981 359 29

Note: When the cost variance is above its minimum of $29 billion in the
bottom row, the cost constraint is binding and u*¼M. At the minimum
cost variance, u* is computed according to Equation (8) in the text.
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Figure 1 Efficient frontiers, indifference curves, and optimal
pairs of expected procurement cost and cost variance. Note:
Each frontier is intentionally drawn to include a small upward-
sloping segment, which is beyond the frontier’s relevant range,
so as to indicate the minimum cost variance of $29 billion
reported in the bottom row of Table 3.
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of low cost risk. We have shown how to identify the optimal

set by solving a series of expected-cost-constrained risk-

minimization problems and summarizing the solutions in an

efficient frontier that displays the Pareto-optimal tradeoffs

between the expected procurement cost and the cost

variance. The solutions, however, depend upon the values

assigned to a set of parameters, and we have also described,

albeit briefly here, the use of regression analysis to assign

those values.

A second aspect of the problem requires management to

quantify the tradeoffs between expected cost and cost risk

that it is willing to accept on behalf of its customers. That,

assuredly, is a somewhat more difficult problem, but it is one

that all managers face, in one form or another, and

represents one of the reasons why top management ‘earns

the big bucks.’ Once management has bitten the bullet and

quantified those tradeoffs, the optimal forward-purchase

quantity is immediately determined.
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